/*
|
* Licensed to the Apache Software Foundation (ASF) under one
|
* or more contributor license agreements. See the NOTICE file
|
* distributed with this work for additional information
|
* regarding copyright ownership. The ASF licenses this file
|
* to you under the Apache License, Version 2.0 (the
|
* "License"); you may not use this file except in compliance
|
* with the License. You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing,
|
* software distributed under the License is distributed on an
|
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
* KIND, either express or implied. See the License for the
|
* specific language governing permissions and limitations
|
* under the License.
|
*/
|
|
import {__DEV__} from '../../config';
|
import {makeInner, getDataItemValue} from '../../util/model';
|
import {getCoordSysDefineBySeries} from '../../model/referHelper';
|
import {
|
createHashMap,
|
each,
|
map,
|
isArray,
|
isString,
|
isObject,
|
isTypedArray,
|
isArrayLike,
|
extend,
|
assert
|
} from 'zrender/src/core/util';
|
import Source from '../Source';
|
|
import {
|
SOURCE_FORMAT_ORIGINAL,
|
SOURCE_FORMAT_ARRAY_ROWS,
|
SOURCE_FORMAT_OBJECT_ROWS,
|
SOURCE_FORMAT_KEYED_COLUMNS,
|
SOURCE_FORMAT_UNKNOWN,
|
SOURCE_FORMAT_TYPED_ARRAY,
|
SERIES_LAYOUT_BY_ROW
|
} from './sourceType';
|
|
|
var inner = makeInner();
|
|
/**
|
* @see {module:echarts/data/Source}
|
* @param {module:echarts/component/dataset/DatasetModel} datasetModel
|
* @return {string} sourceFormat
|
*/
|
export function detectSourceFormat(datasetModel) {
|
var data = datasetModel.option.source;
|
var sourceFormat = SOURCE_FORMAT_UNKNOWN;
|
|
if (isTypedArray(data)) {
|
sourceFormat = SOURCE_FORMAT_TYPED_ARRAY;
|
}
|
else if (isArray(data)) {
|
// FIXME Whether tolerate null in top level array?
|
if (data.length === 0) {
|
sourceFormat = SOURCE_FORMAT_ARRAY_ROWS;
|
}
|
|
for (var i = 0, len = data.length; i < len; i++) {
|
var item = data[i];
|
|
if (item == null) {
|
continue;
|
}
|
else if (isArray(item)) {
|
sourceFormat = SOURCE_FORMAT_ARRAY_ROWS;
|
break;
|
}
|
else if (isObject(item)) {
|
sourceFormat = SOURCE_FORMAT_OBJECT_ROWS;
|
break;
|
}
|
}
|
}
|
else if (isObject(data)) {
|
for (var key in data) {
|
if (data.hasOwnProperty(key) && isArrayLike(data[key])) {
|
sourceFormat = SOURCE_FORMAT_KEYED_COLUMNS;
|
break;
|
}
|
}
|
}
|
else if (data != null) {
|
throw new Error('Invalid data');
|
}
|
|
inner(datasetModel).sourceFormat = sourceFormat;
|
}
|
|
/**
|
* [Scenarios]:
|
* (1) Provide source data directly:
|
* series: {
|
* encode: {...},
|
* dimensions: [...]
|
* seriesLayoutBy: 'row',
|
* data: [[...]]
|
* }
|
* (2) Refer to datasetModel.
|
* series: [{
|
* encode: {...}
|
* // Ignore datasetIndex means `datasetIndex: 0`
|
* // and the dimensions defination in dataset is used
|
* }, {
|
* encode: {...},
|
* seriesLayoutBy: 'column',
|
* datasetIndex: 1
|
* }]
|
*
|
* Get data from series itself or datset.
|
* @return {module:echarts/data/Source} source
|
*/
|
export function getSource(seriesModel) {
|
return inner(seriesModel).source;
|
}
|
|
/**
|
* MUST be called before mergeOption of all series.
|
* @param {module:echarts/model/Global} ecModel
|
*/
|
export function resetSourceDefaulter(ecModel) {
|
// `datasetMap` is used to make default encode.
|
inner(ecModel).datasetMap = createHashMap();
|
}
|
|
/**
|
* [Caution]:
|
* MUST be called after series option merged and
|
* before "series.getInitailData()" called.
|
*
|
* [The rule of making default encode]:
|
* Category axis (if exists) alway map to the first dimension.
|
* Each other axis occupies a subsequent dimension.
|
*
|
* [Why make default encode]:
|
* Simplify the typing of encode in option, avoiding the case like that:
|
* series: [{encode: {x: 0, y: 1}}, {encode: {x: 0, y: 2}}, {encode: {x: 0, y: 3}}],
|
* where the "y" have to be manually typed as "1, 2, 3, ...".
|
*
|
* @param {module:echarts/model/Series} seriesModel
|
*/
|
export function prepareSource(seriesModel) {
|
var seriesOption = seriesModel.option;
|
|
var data = seriesOption.data;
|
var sourceFormat = isTypedArray(data)
|
? SOURCE_FORMAT_TYPED_ARRAY : SOURCE_FORMAT_ORIGINAL;
|
var fromDataset = false;
|
|
var seriesLayoutBy = seriesOption.seriesLayoutBy;
|
var sourceHeader = seriesOption.sourceHeader;
|
var dimensionsDefine = seriesOption.dimensions;
|
|
var datasetModel = getDatasetModel(seriesModel);
|
if (datasetModel) {
|
var datasetOption = datasetModel.option;
|
|
data = datasetOption.source;
|
sourceFormat = inner(datasetModel).sourceFormat;
|
fromDataset = true;
|
|
// These settings from series has higher priority.
|
seriesLayoutBy = seriesLayoutBy || datasetOption.seriesLayoutBy;
|
sourceHeader == null && (sourceHeader = datasetOption.sourceHeader);
|
dimensionsDefine = dimensionsDefine || datasetOption.dimensions;
|
}
|
|
var completeResult = completeBySourceData(
|
data, sourceFormat, seriesLayoutBy, sourceHeader, dimensionsDefine
|
);
|
|
// Note: dataset option does not have `encode`.
|
var encodeDefine = seriesOption.encode;
|
if (!encodeDefine && datasetModel) {
|
encodeDefine = makeDefaultEncode(
|
seriesModel, datasetModel, data, sourceFormat, seriesLayoutBy, completeResult
|
);
|
}
|
|
inner(seriesModel).source = new Source({
|
data: data,
|
fromDataset: fromDataset,
|
seriesLayoutBy: seriesLayoutBy,
|
sourceFormat: sourceFormat,
|
dimensionsDefine: completeResult.dimensionsDefine,
|
startIndex: completeResult.startIndex,
|
dimensionsDetectCount: completeResult.dimensionsDetectCount,
|
encodeDefine: encodeDefine
|
});
|
}
|
|
// return {startIndex, dimensionsDefine, dimensionsCount}
|
function completeBySourceData(data, sourceFormat, seriesLayoutBy, sourceHeader, dimensionsDefine) {
|
if (!data) {
|
return {dimensionsDefine: normalizeDimensionsDefine(dimensionsDefine)};
|
}
|
|
var dimensionsDetectCount;
|
var startIndex;
|
var findPotentialName;
|
|
if (sourceFormat === SOURCE_FORMAT_ARRAY_ROWS) {
|
// Rule: Most of the first line are string: it is header.
|
// Caution: consider a line with 5 string and 1 number,
|
// it still can not be sure it is a head, because the
|
// 5 string may be 5 values of category columns.
|
if (sourceHeader === 'auto' || sourceHeader == null) {
|
arrayRowsTravelFirst(function (val) {
|
// '-' is regarded as null/undefined.
|
if (val != null && val !== '-') {
|
if (isString(val)) {
|
startIndex == null && (startIndex = 1);
|
}
|
else {
|
startIndex = 0;
|
}
|
}
|
// 10 is an experience number, avoid long loop.
|
}, seriesLayoutBy, data, 10);
|
}
|
else {
|
startIndex = sourceHeader ? 1 : 0;
|
}
|
|
if (!dimensionsDefine && startIndex === 1) {
|
dimensionsDefine = [];
|
arrayRowsTravelFirst(function (val, index) {
|
dimensionsDefine[index] = val != null ? val : '';
|
}, seriesLayoutBy, data);
|
}
|
|
dimensionsDetectCount = dimensionsDefine
|
? dimensionsDefine.length
|
: seriesLayoutBy === SERIES_LAYOUT_BY_ROW
|
? data.length
|
: data[0]
|
? data[0].length
|
: null;
|
}
|
else if (sourceFormat === SOURCE_FORMAT_OBJECT_ROWS) {
|
if (!dimensionsDefine) {
|
dimensionsDefine = objectRowsCollectDimensions(data);
|
findPotentialName = true;
|
}
|
}
|
else if (sourceFormat === SOURCE_FORMAT_KEYED_COLUMNS) {
|
if (!dimensionsDefine) {
|
dimensionsDefine = [];
|
findPotentialName = true;
|
each(data, function (colArr, key) {
|
dimensionsDefine.push(key);
|
});
|
}
|
}
|
else if (sourceFormat === SOURCE_FORMAT_ORIGINAL) {
|
var value0 = getDataItemValue(data[0]);
|
dimensionsDetectCount = isArray(value0) && value0.length || 1;
|
}
|
else if (sourceFormat === SOURCE_FORMAT_TYPED_ARRAY) {
|
if (__DEV__) {
|
assert(!!dimensionsDefine, 'dimensions must be given if data is TypedArray.');
|
}
|
}
|
|
var potentialNameDimIndex;
|
if (findPotentialName) {
|
each(dimensionsDefine, function (dim, idx) {
|
if ((isObject(dim) ? dim.name : dim) === 'name') {
|
potentialNameDimIndex = idx;
|
}
|
});
|
}
|
|
return {
|
startIndex: startIndex,
|
dimensionsDefine: normalizeDimensionsDefine(dimensionsDefine),
|
dimensionsDetectCount: dimensionsDetectCount,
|
potentialNameDimIndex: potentialNameDimIndex
|
// TODO: potentialIdDimIdx
|
};
|
}
|
|
// Consider dimensions defined like ['A', 'price', 'B', 'price', 'C', 'price'],
|
// which is reasonable. But dimension name is duplicated.
|
// Returns undefined or an array contains only object without null/undefiend or string.
|
function normalizeDimensionsDefine(dimensionsDefine) {
|
if (!dimensionsDefine) {
|
// The meaning of null/undefined is different from empty array.
|
return;
|
}
|
var nameMap = createHashMap();
|
return map(dimensionsDefine, function (item, index) {
|
item = extend({}, isObject(item) ? item : {name: item});
|
|
// User can set null in dimensions.
|
// We dont auto specify name, othewise a given name may
|
// cause it be refered unexpectedly.
|
if (item.name == null) {
|
return item;
|
}
|
|
// Also consider number form like 2012.
|
item.name += '';
|
// User may also specify displayName.
|
// displayName will always exists except user not
|
// specified or dim name is not specified or detected.
|
// (A auto generated dim name will not be used as
|
// displayName).
|
if (item.displayName == null) {
|
item.displayName = item.name;
|
}
|
|
var exist = nameMap.get(item.name);
|
if (!exist) {
|
nameMap.set(item.name, {count: 1});
|
}
|
else {
|
item.name += '-' + exist.count++;
|
}
|
|
return item;
|
});
|
}
|
|
function arrayRowsTravelFirst(cb, seriesLayoutBy, data, maxLoop) {
|
maxLoop == null && (maxLoop = Infinity);
|
if (seriesLayoutBy === SERIES_LAYOUT_BY_ROW) {
|
for (var i = 0; i < data.length && i < maxLoop; i++) {
|
cb(data[i] ? data[i][0] : null, i);
|
}
|
}
|
else {
|
var value0 = data[0] || [];
|
for (var i = 0; i < value0.length && i < maxLoop; i++) {
|
cb(value0[i], i);
|
}
|
}
|
}
|
|
function objectRowsCollectDimensions(data) {
|
var firstIndex = 0;
|
var obj;
|
while (firstIndex < data.length && !(obj = data[firstIndex++])) {} // jshint ignore: line
|
if (obj) {
|
var dimensions = [];
|
each(obj, function (value, key) {
|
dimensions.push(key);
|
});
|
return dimensions;
|
}
|
}
|
|
// ??? TODO merge to completedimensions, where also has
|
// default encode making logic. And the default rule
|
// should depends on series? consider 'map'.
|
function makeDefaultEncode(
|
seriesModel, datasetModel, data, sourceFormat, seriesLayoutBy, completeResult
|
) {
|
var coordSysDefine = getCoordSysDefineBySeries(seriesModel);
|
var encode = {};
|
// var encodeTooltip = [];
|
// var encodeLabel = [];
|
var encodeItemName = [];
|
var encodeSeriesName = [];
|
var seriesType = seriesModel.subType;
|
|
// ??? TODO refactor: provide by series itself.
|
// Consider the case: 'map' series is based on geo coordSys,
|
// 'graph', 'heatmap' can be based on cartesian. But can not
|
// give default rule simply here.
|
var nSeriesMap = createHashMap(['pie', 'map', 'funnel']);
|
var cSeriesMap = createHashMap([
|
'line', 'bar', 'pictorialBar', 'scatter', 'effectScatter', 'candlestick', 'boxplot'
|
]);
|
|
// Usually in this case series will use the first data
|
// dimension as the "value" dimension, or other default
|
// processes respectively.
|
if (coordSysDefine && cSeriesMap.get(seriesType) != null) {
|
var ecModel = seriesModel.ecModel;
|
var datasetMap = inner(ecModel).datasetMap;
|
var key = datasetModel.uid + '_' + seriesLayoutBy;
|
var datasetRecord = datasetMap.get(key)
|
|| datasetMap.set(key, {categoryWayDim: 1, valueWayDim: 0});
|
|
// TODO
|
// Auto detect first time axis and do arrangement.
|
each(coordSysDefine.coordSysDims, function (coordDim) {
|
// In value way.
|
if (coordSysDefine.firstCategoryDimIndex == null) {
|
var dataDim = datasetRecord.valueWayDim++;
|
encode[coordDim] = dataDim;
|
|
// ??? TODO give a better default series name rule?
|
// especially when encode x y specified.
|
// consider: when mutiple series share one dimension
|
// category axis, series name should better use
|
// the other dimsion name. On the other hand, use
|
// both dimensions name.
|
|
encodeSeriesName.push(dataDim);
|
// encodeTooltip.push(dataDim);
|
// encodeLabel.push(dataDim);
|
}
|
// In category way, category axis.
|
else if (coordSysDefine.categoryAxisMap.get(coordDim)) {
|
encode[coordDim] = 0;
|
encodeItemName.push(0);
|
}
|
// In category way, non-category axis.
|
else {
|
var dataDim = datasetRecord.categoryWayDim++;
|
encode[coordDim] = dataDim;
|
// encodeTooltip.push(dataDim);
|
// encodeLabel.push(dataDim);
|
encodeSeriesName.push(dataDim);
|
}
|
});
|
}
|
// Do not make a complex rule! Hard to code maintain and not necessary.
|
// ??? TODO refactor: provide by series itself.
|
// [{name: ..., value: ...}, ...] like:
|
else if (nSeriesMap.get(seriesType) != null) {
|
// Find the first not ordinal. (5 is an experience value)
|
var firstNotOrdinal;
|
for (var i = 0; i < 5 && firstNotOrdinal == null; i++) {
|
if (!doGuessOrdinal(
|
data, sourceFormat, seriesLayoutBy,
|
completeResult.dimensionsDefine, completeResult.startIndex, i
|
)) {
|
firstNotOrdinal = i;
|
}
|
}
|
if (firstNotOrdinal != null) {
|
encode.value = firstNotOrdinal;
|
var nameDimIndex = completeResult.potentialNameDimIndex
|
|| Math.max(firstNotOrdinal - 1, 0);
|
// By default, label use itemName in charts.
|
// So we dont set encodeLabel here.
|
encodeSeriesName.push(nameDimIndex);
|
encodeItemName.push(nameDimIndex);
|
// encodeTooltip.push(firstNotOrdinal);
|
}
|
}
|
|
// encodeTooltip.length && (encode.tooltip = encodeTooltip);
|
// encodeLabel.length && (encode.label = encodeLabel);
|
encodeItemName.length && (encode.itemName = encodeItemName);
|
encodeSeriesName.length && (encode.seriesName = encodeSeriesName);
|
|
return encode;
|
}
|
|
/**
|
* If return null/undefined, indicate that should not use datasetModel.
|
*/
|
function getDatasetModel(seriesModel) {
|
var option = seriesModel.option;
|
// Caution: consider the scenario:
|
// A dataset is declared and a series is not expected to use the dataset,
|
// and at the beginning `setOption({series: { noData })` (just prepare other
|
// option but no data), then `setOption({series: {data: [...]}); In this case,
|
// the user should set an empty array to avoid that dataset is used by default.
|
var thisData = option.data;
|
if (!thisData) {
|
return seriesModel.ecModel.getComponent('dataset', option.datasetIndex || 0);
|
}
|
}
|
|
/**
|
* The rule should not be complex, otherwise user might not
|
* be able to known where the data is wrong.
|
* The code is ugly, but how to make it neat?
|
*
|
* @param {module:echars/data/Source} source
|
* @param {number} dimIndex
|
* @return {boolean} Whether ordinal.
|
*/
|
export function guessOrdinal(source, dimIndex) {
|
return doGuessOrdinal(
|
source.data,
|
source.sourceFormat,
|
source.seriesLayoutBy,
|
source.dimensionsDefine,
|
source.startIndex,
|
dimIndex
|
);
|
}
|
|
// dimIndex may be overflow source data.
|
function doGuessOrdinal(
|
data, sourceFormat, seriesLayoutBy, dimensionsDefine, startIndex, dimIndex
|
) {
|
var result;
|
// Experience value.
|
var maxLoop = 5;
|
|
if (isTypedArray(data)) {
|
return false;
|
}
|
|
// When sourceType is 'objectRows' or 'keyedColumns', dimensionsDefine
|
// always exists in source.
|
var dimName;
|
if (dimensionsDefine) {
|
dimName = dimensionsDefine[dimIndex];
|
dimName = isObject(dimName) ? dimName.name : dimName;
|
}
|
|
if (sourceFormat === SOURCE_FORMAT_ARRAY_ROWS) {
|
if (seriesLayoutBy === SERIES_LAYOUT_BY_ROW) {
|
var sample = data[dimIndex];
|
for (var i = 0; i < (sample || []).length && i < maxLoop; i++) {
|
if ((result = detectValue(sample[startIndex + i])) != null) {
|
return result;
|
}
|
}
|
}
|
else {
|
for (var i = 0; i < data.length && i < maxLoop; i++) {
|
var row = data[startIndex + i];
|
if (row && (result = detectValue(row[dimIndex])) != null) {
|
return result;
|
}
|
}
|
}
|
}
|
else if (sourceFormat === SOURCE_FORMAT_OBJECT_ROWS) {
|
if (!dimName) {
|
return;
|
}
|
for (var i = 0; i < data.length && i < maxLoop; i++) {
|
var item = data[i];
|
if (item && (result = detectValue(item[dimName])) != null) {
|
return result;
|
}
|
}
|
}
|
else if (sourceFormat === SOURCE_FORMAT_KEYED_COLUMNS) {
|
if (!dimName) {
|
return;
|
}
|
var sample = data[dimName];
|
if (!sample || isTypedArray(sample)) {
|
return false;
|
}
|
for (var i = 0; i < sample.length && i < maxLoop; i++) {
|
if ((result = detectValue(sample[i])) != null) {
|
return result;
|
}
|
}
|
}
|
else if (sourceFormat === SOURCE_FORMAT_ORIGINAL) {
|
for (var i = 0; i < data.length && i < maxLoop; i++) {
|
var item = data[i];
|
var val = getDataItemValue(item);
|
if (!isArray(val)) {
|
return false;
|
}
|
if ((result = detectValue(val[dimIndex])) != null) {
|
return result;
|
}
|
}
|
}
|
|
function detectValue(val) {
|
// Consider usage convenience, '1', '2' will be treated as "number".
|
// `isFinit('')` get `true`.
|
if (val != null && isFinite(val) && val !== '') {
|
return false;
|
}
|
else if (isString(val) && val !== '-') {
|
return true;
|
}
|
}
|
|
return false;
|
}
|